
A Novel Approach for Business Document
Representation and Processing without Semantic

Ambiguity in E-Commerce

Shuo Yang and Jingzhi Guo
 Faculty of Science and Technology

University of Macau
Macau, China

{yb37416, jzguo}@umac.mo

Abstract—Exact document interpretation is very important to
semantic document exchange. An essential issue for document
interpretation is to maintain syntactic and semantic consistency
of the exchanged documents between any two autonomous
business communities, where the document sender and receiver
have no misunderstanding in using the exchanged documents.
Existing approaches to resolving this issue mainly adopt
document standards. While these approaches are effective in
certain degree, the issue of limited flexibility and evolvement in
using standards must be explored and resolved. This paper
proposes a multi-viewed tabular document (Tabdoc) approach
consisting of a Tabdoc model and a document processing
procedure to achieving consistent document interpretation
between document writers and readers. In this approach, any
document is a table, which is seen as a tree to represent document
structure. Concepts, layout and grammatical relations of a same
document are separated from the document structure and form
different views in Tabdoc model.

Keywords-semantic document; semantic consistency; multi-
viewed tabular document

I. INTRODUCTION

Currently, a technical challenge of document exchange [1]
is the lack of consistent document interpretation for document
interoperation across domains of involved enterprise
information systems (EISs). This is because sending parties
and receiving parties are often situated in different semantic
communities. Specifically, not all firms participating in an e-
marketplace adopt the same vocabulary and meaning before
exchanging a message. They provide different syntax to
exchange information, and they do not associate the
information with consistent semantics which facilitates the
mapping between different specifications. Thus, the receiving
parties (both computers and human) cannot correctly interpret
the structure and meaning carried by the received documents.
This hinders the future development of e-business document
exchange and much affects the automatic document processing
[2], leading to e-business automation unavailable.

Here we use an example to see how semantic heterogeneity
affects automatic document processing: Seller A sends a valid
offer of fridge to Buyer B and Buyer B confirms the offer by
sending back an offer acceptance. In this legally valid offer-

acceptance business cycle, the Seller’s offer is made in Table I
and the Buyer’s offer acceptance is made in Table II. Both
tables are generated based on their local databases and the
messages in exchange. If the two firms have ever cooperated,
they may know each other very well. However, if they have
never co-operated before, they may have misunderstanding in
semantics. For instance, the problem happens when Seller A
deems that it sells a mini household refrigerator in US$200, but
Buyer B believes it confirms an offer of camping fridge only
worth of HK$200. Definitely, this is a legally-flawed offer-
acceptance cycle and will cause legal consequences. In an
extreme condition such that Buyer B do not understand English,
it cannot interpret the details of the offer from Seller A,
because concepts are only understandable in the Seller A’s own
context. Besides, relations between concepts or terms are not
elaborated for computers. For example, what the relation
between the term ‘unit price’ and the number ‘200’ is.

TABLE I. A VALID OFFER OF SELLER A

Dear sir/madam,

This is an offer about fridge from our company. It is the recent product
by incorporating many modern design elements that are more suitable for
user experience. This kind of fridge is in orange and has the extremely
power of low-temperature control. For the favor of customers, the unit
price is only $200 if the order quantity is more than 100 pieces (contains).
For more details, you are free to contact us at any time with the offer No.
S111 and it is valid before 15/12/2015.

TABLE II. A VALID OFFER ACCEPTANCE OF BUYER B

Dear sir/madam,

Our company is very pleased to order the recent fridge product from
your company as you mentioned in the last offer sheet. It is in orange color
with high quality of temperature control. We are planning to order 100
pieces at each price of $200 with the total amount of $20,000. This
acceptance confirms the offer No. S111 on 10/12/2015.

Technically speaking, the above problems can be easily
avoided if the offer-acceptance cycle is processed by human.
Nevertheless, when a trading process is automatically handled
by autonomously developed software systems, the business

978-1-47��-����-� /1�/$31.00 ©201� IEEE

document sense disambiguation becomes a tough research
problem and must be resolved.

The above example shows that the issue of document
interoperability is extremely complex and quite context
dependent. The interpretation of a piece of document (e.g., a
product specification) relies on different contexts. It is
impossible for a document writer to image all contexts of
document consumers and a document consumer has difficulty
inferring correctly the contexts of document writers. By a
simple classification, heterogeneous document representations
shown in the example have semantic conflicts in semantic
encoding (e.g., term conflicts in definition), relations between
concepts (e.g., unit price and 200) and context reference
systems (e.g., different interpretations of ‘200’). Besides,
heterogeneous document syntax (i.e., structure) constrains
automatic document processing. These problems illustrate that,
without a proper mechanism, a business document may not be
accurately interpreted and automatically processed by receivers.

Even though many existing document standards have tried
different approaches, they are not effective to conquer these
problems between two unknown parties in the e-marketplace.
In addition, most existing methods import the whole document
into memory before document processing, which is not
applicable to deal with large ones.

This paper aims to eliminate the semantic inconsistency
between document writers and readers by proposing a novel
multi-viewed tabular document (Tabdoc) model to build
semantic documents which have universal document structure
representation for automatic document processing. The
approach is based on CONEX [5], where business concepts
used in different firms can be collaboratively designed by
concept designers and easily used by business users without
semantic ambiguity.

The rest of this paper is arranged as follows. Section 2
discusses some related work. Section 3 gives an overview of
Tabdoc model for document representation. Section 4 proposes
a processing procedure for semantic documents built on
Tabdoc model. Section 5 describes an experiment on the
approach. Finally, a conclusion is provided.

II. RELATED WORK

A. CONEX
CONEX is a collaborative conceptualization approach to

maintain semantic consistency between heterogeneous concept
sets used in different EISs. CONEX guarantees that all
concepts created, communicated, and used in the e-marketplace
are accurate and semantically consistent without ambiguity on
the CONEX chain of “reified concept riid1 ⇔ local concept
liid1 ⇔ mapping concept (liid1, ciid) ⇔ common concept ciid ⇔ mapping concept (ciid, liid2) ⇔ local concept liid2 ⇔
reified concept riid2.” It contributes to a trichotomic view of
design, implementation, and use of heterogeneous concepts for
semantic consistency maintenance. With this view, concept
engineers are responsible for collaborative concept design for
common concepts and local concepts in a collaborative-
concept-editing system [5]; rule makers implement all
executable concepts as ruled concepts or control rules for verbs

and adjectives in both common and local levels, and concept
users automatically reify these concepts and simply use them.

In the recent, our research group extends CONEX with a
near synonym graph (NSG) framework based on WordNet [7]
[8] for automating the process of multilingual concept
disambiguation in order to find multilingual near synonyms,
that is, the semantically equivalent and similar concepts in an
initial multilingual vocabulary. The main idea is: for all
vocabulary entries that need to be collaboratively edited, they
are preprocessed by a near synonym finding process, so that
collaborative editors can resolve semantic conflicts between
vocabulary entries using sets of near synonyms identified in the
preprocessing. CONEX and its importance have already been
described in the projects of CONEX [5], collaborative
document exchange [1], and collaborative process exchange [6]
and will not be elaborated in this paper.

B. Business Document Standards
Business document standards can be classified into eight

categories, each of which represents a family of related
business standards according to their technical features. First,
top-down standardization approaches (e.g., UN/EDIFACT [9])
provide general concepts for business document creation. Users
can easily find appropriate business elements in the standard.
Second, bottom-up standard approaches (e.g., electronic
payment standard [10]) focus on maintaining common and
important business elements leaving individual requirements
for further extension. Third, hybrid standardization approaches
(e.g., UBL [11]) integrate the general feature from top-down
standards and the extendable feature from bottom-up standards.
Forth, early markup language approaches (e.g., OAGIS [12])
utilize XML to define business document standards, where
communicated applications need to share business object
documents. Fifth, integrated standardization approaches (e.g.,
ebXML [13]) create consistent business messages and common
business processes in order to achieve automated business
transactions. Sixth, transitioned standardization approaches
(e.g., HL7 [14]) help EDIFACT-based or other standards to be
translated to XML. Seventh, implementation neutral
standardization approaches (e.g., CCTS [15] [16]) aim to
construct general, concept-leveled business document
standards without the consideration of concrete syntactic
implementation. Eighth, converging approaches (e.g., UNIFI
[17]) merge different business standards if they repeatedly
define same concepts when dealing with the same problem in
business. Each standardization-based business document
standard tries to apply one sharable document designing
standard to all heterogeneous EISs of involved parties.
Technically, for standardization-based approaches, the
semantic consistency maintenance between inter-enterprise
business documents is limited to the trading partners that have
used the same business document standard. However, outside
of these trading partners, business document interpretation may
not be accurate. In other words, although these standard
approaches are effective in certain degree, they cannot
guarantee that what any document reader sees is the exact
meaning that any document writer wants to expresses.

III. DOCUMENT REPRESENTATION

In the e-marketplace, most documents can be represented in
the form of tabular structure which suffices for meaning
understanding in most trading cases [18]. In this paper, a
document is, essentially represented as a nested table. Such
representation is necessary because only a table can minimize
the term ambiguity problem by restricting that one table cell for
one term or a new sub-table. When building a table, the
meaning of each cell is specified and unambiguous. First, table
value cells (e.g., empty table cells) can be restricted by table
heading cells (e.g., table cells at the first row) in term of
semantics and syntax. Second, there exist different
grammatical relations between cells. A grammatical relation
refers to a functional relationship between constituents in a
document. Third, cells in a table are constructed in a certain
form that enables human understanding.

To maintain accurate interpretation of documents between
interactive parties, it requires not only the consistent document
structure but the consistent semantics of document content.
This paper proposes multi-viewed tabular document (Tabdoc)
model to build documents exchanged among unknown parties.
By this model, a document is represented in three aspects,
which are syntactic representation, semantic representation and
visual representation. Syntactic representation for a tabular
document consists of a set of elements which can form a tree
structure [4]. This tree can be alternatively structured as a table
with columns and rows. Any node of a tree has a unique
correspondent position in a table as a table cell, which is
identified as a term identifier (tid) in the tree and also identified
by a cell identifier of a table. Visual representation concerns
with visual styles of elements in a tabular document. Semantic
representation consists of concepts and their grammatical
relations. Tabdoc model contains several views in the high-
level, including structure view for syntactic representation,
layout view for visual representation, concept view and
association view for semantic representation.

A. Structure View
In this paper, any document is structured as a tree in syntax

for data storage. It is syntactically represented based on a
vector tree model [3], as follows:

Definition 1 (Tree-based Document “τ”). A document is a
tree τ, which is represented as a vector tree:

τ = ���, ���, … , ���, … , ��) (1)
where (1) each node in τ is represented by I with another two
notations; (2) level of a node in τ is k � (1, …, n); (3) sibling
nodes are represented by i � (0, …, m) at the same level (e.g.,
l); (4) parent of a node at level k is represented by a vector
(���, … , ���
�); (5) children of a node at level k is a set of vectors
in the form of (���, … , �����) and (6) root of τ is a one
dimensional vector (���) with k = 1 and i = 1.

For example, a transformation from a vector tree to a two-
dimensional table can be found in Fig. 1 with three tree nodes
identified by tid (i.e., a vector).

Alternatively, a document is also structured as a nested
table in syntax for presentation, that is, a nested matrix in
mathematics defined as follows:

Figure 1. A tree-based document.

Definition 2 (Table-based Document “t”). A document is
represented as a nested table t of below:

� =
⎣⎢
⎢⎢
⎡����� … �����… … …… ����� …… … …����� … �����⎦⎥

⎥⎥
⎤ , ������ ⎣⎢

⎢⎢
⎡����� … �����… … …… ����� …… … …����� … �����⎦⎥

⎥⎥
⎤

 (2)

where any ����� is a table cell, which is in the i row and j
column such that 0<i n and 0<j m.

Nested matrixes also enables to construct a table as a tree
structure which is called a matrix tree, denoted by M(nr ,mc).
Each element M(i, j) in M(nr ,mc) refers to the position of a
visual cell at i row and j column (i.e., �����) in t, which is called
matrix position. Matrix position of a cell in t is in the form of:
M[i, j] = M1[i1, j1].M2[i2, j2]…Mn[in, jn], where Mn[in , jn] is the
cell’s position in the final matrix that corresponds to the most
inside nested sub-table while M1[i1, j1],…, Mn-1[in-1, jn-1]
correspond to the matrixes that refer to large tables which
contain the most inside nested sub-table. Thus, a table-based
document can be accessed by traversing its matrix tree.

Vector tree structure (short for tree structure) is responsible
for the logical structure of documents, while matrix structure
(or table structure) aims for document presentation. Constrains
for presentation should not affect the logical structure of a
document, but changes of a logical structure often influence the
presentation. Thus, we model them separately, but make an
internal connection between them as follows.

Syntactically, any tree-based document can be exactly
mapped onto a table-based document. Given a tree-based
document (�) and a table-based document (t), � and t is exactly
mapped if and only if:

���(���) =
⎩⎪
⎪⎨
⎪⎪
⎧ �#$%& '**�, �+ - = 1(1, �), �+ - = 2(., �), �+ - = 3 #/� ���
� = �0�
�(., 4). (1, �), �+ - > 3, -%2 = 0 #/� 8[���
�] = (., 4) (., 4). (9, �), �+ - > 3, -%2 = 1, 8[���
�] = (., 4) #/� 8[���
�] = (., 4). (1, 9)

(3)

From (3), it is known that for any ���, if k = 1, then ��� is a
table root. If k = 2, it means the parent node of ��� imports a list
of nodes which correspond to a set of table cells. At this
condition, ��� maps to the matrix position M[i, j] = (1, i) of a
table. If k = 3 and the sibling number of the parent node of ���
is x, it means the grandparent of ��� imports a table. At this

��� = (row = 0, column = 0)

Row

Column

(���, �:�) = (row = 3, column = 1)

(���, ���, ��:) = (row=2, column=3)

condition, ��� maps to the matrix position M[i, j] = (x, i). If k >
3 and k % 2 = 0, it means the parent node (���
�) of ��� imports
a list of nodes. From table view, the table cell corresponding to ���
� contains a set of sub-cells. If the matrix position of ���
� is
(x, y), then the matrix position of ��� is (x, y).(1, i). If k > 3 and
k % 2 = 1, it means the grandparent node (���
�) of ��� imports a
table. If the matrix position of ���
� is (x, y) and the sibling
number of ���
� is z, then the matrix position of ��� is (x, y).(z, i).

B. Layout View
Layout view is a style sheet used for describing the looking

of a tabular document. It is designed primarily to enable the
separation of tabular document content from its presentation by
storing presentation instructions in a separate style file. In the
following of this paper, matrix position will be used to label the
position of a cell in a table-based document (t) and a pseudo-
table will be built by normalizing each cell of corresponding
matrix tree of t. A cell (�����) situated at the i row and j column
(M(i, j)) in t is called a normalized cell if and only if: ����� =

⎩⎪⎨
⎪⎧ 1, ;ℎ&/ �� ℎ#? @#%A&0, ;ℎ&/ �� �? &BD�4−1, ;ℎ&/ �� ℎ#? ?A$�#$%&1{.}	 *' 0{.}	, ;ℎ&/ �� �? B&'E&� ;��ℎ / '�Eℎ� �&%%?{.}	1 *' {.}	0, ;ℎ&/ �� �? B&'E&� ;��ℎ / $&%*; �&%%?

(4)

Following the theory of [19], it is important to separate
logical structure (tree structure) and presentational structure
(table structure). First, logical structure is a prerequisite to
automate document processing, which can be manipulated
independently of presentational structure. For example, to add
or remove a node in a tree structure, we no longer have to
determine which cells should be added or removed from the
presentation. Second, by associating different layout and styles
with a tree structure, a table can have various presentations.
Besides, tree structure cannot well describe presentational
feature of a tabular document, since a same tree structure may
correspond to different tabular formats. Therefore, this paper
imports the concepts of matrix tree and normalized cell to
assist tabular presentation.

As nodes in a tree structure of a document can be added or
deleted if needed, the value of each normalized cell in any
matrix of a matrix tree can be updated at any time. This means
tree structure and matrix tree, both corresponding to a same
document, will be updated together if the document is modified.
For example, a table (t’) is given below where we simplify tid
by only considering sibling number as shown in Table III.

TABLE III. AN EXAMPLE OF A TABLE

0.k.1.0 (����� = 1) 0.k.1.1 (����F = 1)
0.k.2.0 (��F�� = 1) 1.0 1.1 1.2

2.0 2.1 2.2
3.0 3.1 3.2

0.k.3.0 (��G�� = 1) 0.k.3.1 (��G�F = 1)
0.k.4.0 (��H�� = 1) 0.k.4.1 (��H�F = 1)

The pseudo-table of t’ is �I = J1 11 −11 11 1K, where ��F�F = −1
which means that this cell imports another sub-table such that

��F�F = L1 1 11 1 11 1 1M.

Layout view has a simple syntax and uses English keyword
‘Style’ as the beginning to specify various style properties
followed by the position of a cell (cid(x,y)M(x,y)) in a tabular
document (see (5)).

Style(cid(x,y)M(x,y))={property1=value1,…,propertyn=valuen}(5)

C. Concept View
Concept view consists of a set of concepts used for reifying

cells in a tabular document. It plays a role of database to store
and display content in a table. A tabular document consists of a
set of reification relations. Each reification relation consists of
a cpt(x, y)M(x,y) that declares which cell a reification relation
applies to by matching a cell’s position in a tabular document
and a declaration block. Formula (6) shows the syntax of
concept view.

Concept[cpt(x, y)M(x,y)] = { concept | term } (6)

D. Association View
Association view is a set of grammatical relations used for

associating concepts in a tabular document. Typically, a
grammatical relation is of a particular type that specifies in
what sense an object is related to another objects in a document.
In a tabular document, several cells can form different kinds of
relation in terms of different grammatical relation types. In this
paper, ten types of grammatical relations are considered.
Specifically, subclass relation defines which objects are
classified by which class. Part-of relation defines which
objects can be combined together to form a composite object.
Causality relation defines which object is the cause of which
object (effect). Reference relation defines which objects are the
further explanations of which object. Calculation relation
defines which objects can form a mathematical or logical
operation together. Parallel relation defines which objects
have the same superiority. Progressive relation defines the
superiority of which objects is progressively increase (default)
or decrease. Sequential relation defines which objects have an
order among them. Instance relation defines which object
(instance) is the reification of which object (reified). User-
defined relation defines domain-specific relations. Formula (7)
shows the syntax of the association view.

Association[ass(x,y)M(x,y)]={<grammatical relation type>,

ass1(x1,y1)M(x1,y1),…, assn(xn,yn)M(xn,yn)} (7)

E. Mapping between Different Views
Structure view gives the information about positional and

nested features for each element in a document. It uses vector
tree to locate nodes in the tree structure of the document and
utilizes matrix position to identify cells in the tabular structure
of the same document. When any term identifier (tid) in a

vector tree is one-to-one correspondence with a matrix position
in a matrix tree, then they describe the same document.

From the syntax of layout, concept and association view, all
these views use matrix position to locate elements in a pseudo-
table before specifying how a particular feature can be applied
to a specific cell in a tabular document. In a matrix tree, each
element M(ri , cj) refers to the position of a visual cell at i row
and j column in a tabular document. Thus, if the matrix
position (e.g., M(i, j)) of a cell in the syntax of a view (layout,
association or concept view) is equal to a tid, then the feature
specified by the view will be applied to the particular node in
the vector tree of the structure view. Fig. 2 shows the mapping
model between different views.

M(i, j) =
cpt(x, y)M

(1,1) ... (1,)

(,) (,)

(,1) ... (,)

r c

M M m

T M n m M i j

M n M n m

� �
� �
� �
� �� �
� �
� �
� �	

�
�
��

�(,)M(,(,
�

)j(, ��)M(,,
�
�
��

Table View

style(cid | rno | cno)
=
{property1=’value1’,
… ,
propertyn=’valuen’ }

Layout View

Association[cpt(x,y)M] =
{ <grammatical relation
type>, cpt1(x1, y1)M, …,
cptn(xn, yn)M }

Assication View

M(i,j)=cidM(i,j)
=ass(x, y)M

Concept[cpt(x, y)M]
= { concept | term }

Concept View

Vector Tree

Tree View

M(i, j) = tid

Figure 2. Mapping model.

IV. DOCUMENT PROCESSING
The procedure of semantic document processing in Tabdoc

approach consists of six steps such that syntactic check,
semantic check, document analysis, document understanding,
document template selection and new document creation. In
the following, these steps are discussed in detail.

A. Syntactic Check
Syntactic check is to examine whether a document is

consistent with Tabdoc schema. Tabdoc schema is a messaging
standard for creating documents which are interoperable in the
syntax at both document writers’ and readers’ sides. It defines a
semantic document as a set of recursive abstract concepts
and/or reified concepts as follows.

Document:=concept1[(denoter1,…denotern){value}](conce
pt2[…] ,…,conceptm[…])

In this schema, any abstract concept comes from the
CONEX [5] and can form a hierarchical structure by nesting
other abstract concepts. It represents a semantic object if and
only if it is reified as any {value}. It denotes itself by using a
denotation structure […] with a set of denoters.

If syntactic check is not proven, it will block the unproven
part with a consequence of either aborting or continuing the
process, depending on predefined procedural rules at the
document receiver side. Document receivers can design
syntactic check in the form of if-then structure like:

�+∀?I(@P�QS�) ∈ UI ! = W#$�*� ?�ℎ&B# ∈ U Wℎ&/ X&Y&��(UI) (8)

The notation “!=” means not satisfy. Formula (8) means if
any element (s’) at tid=i in a received document (D’) not
satisfies user-defined Tabdoc schema of the original document
(D) from a document writer, then the document receiver will
reject D’.

B. Semantic Check
When arrived, the concepts and grammatical relations in

the received document will be translated into the semantically
equivalent concepts and relations in the context of the receiver
according to the CONEX chain [5]. Semantic check aims to
examine whether the incoming document is consistent with
mutually understandable CONEX concepts by validating
whether the vocabularies used in the document are
semantically consistent with common vocabularies in CONEX.
If exists vocabularies in the received document not pre-defined
in CONEX, it means that the document sender used some its
own vocabularies to construct the document, which may lead to
semantic inconsistency at the receiver side. In this case, the
semantic check will block the unproven part with a
consequence of aborting the process and a request for
constructing new vocabularies in CONEX from the receiver
will be sent to the document writer.

Since synonyms are considered as semantically consistent
concepts across heterogeneous EISs, they are semantically
equivalent in CONEX if they have the same iid [5]. In CONEX,
different meanings of a polysemous concept have different iids,
therefore they are not semantically equivalent even if they use
the same word form. Thus, synonyms do not affect semantic
check but polysemous concepts do. Document receivers can
also design semantic check in the form of if-then structure like:

�+∀@I(@P�QS�) ∈ UI ! =Z\^ @ ∈ _`abd Wℎ&/ X&eA&?�(@I) (9)

The notation “!=sem” means not semantically equivalent.
Formula (9) means if any vocabulary (v’) at tid=i in D’ not
semantically equivalent to a vocabulary (v) in CONEX, then
the document receiver will request the sender to construct a
new vocabulary in CONEX for accurate interpretation.

C. Document Analysis
Document analysis is to extract the document structure.

Since Tabdoc model follows sign theory [5] by structuring a
document as a tree structure, document analysis results in
creating a vector tree of the incoming document. Given a
document whose root is identified by 1.i.j…x.y.z where tid is
simplified by only considering sibling number for easy reading,
a vector tree can be reconstructed through the following
processes:

Step 1: Set the document root as a vector tree root = 1.i.j…x

Step 2: Create the row nodes indexed from 1.i.j…x.1 to
1.i.j…x.y based on the table row number (e.g., y).

Step 3: Create the column nodes indexed from 1.i.j…x.1.1 to
1.i.j…x.y.z based on the table column number (e.g., z).

Step 4: Create sub-tree by first identifying a sub-table root. By
setting a convention, a table root shall be explicitly identified
by the denoter of a sign.

Step 5: Repeat the above steps until all terminal nodes have no
sub-tree.

For example, given a table below by supposing the root of
the table is 1.i.k, a vector tree (VT) will be immediately
constructed as shown in Fig. 3.

1.i.k(0, 0) Not
Exist

Not Exist Not Exist Not Exist Not Exist

1.i.k(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)
1.i.k(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)
1.i.k(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)
1.i.k(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

Figure 3. An example of creating a vector tree by a table.

D. Document Understanding
Document understanding deals with finding reification and

grammatical relations by using the concept view and
association view of the incoming document. For each
reification relation in concept view, a concept will instantiate a
node in the vector tree through the mapping between vector
tree and matrix tree. For each grammatical relation in the
association view, a link will be drawn between related nodes in
the vector tree. In a tabular document, several cells can form
different kinds of relation in terms of different grammatical
relation types. For example, Table IV lists parts of the
grammatical relations in Fig. 3.

TABLE IV. GRAMMATICAL RELATIONS IN FIG. 3

Association[ass(1,0)M(1,0)]={<part
-of>, ass(1, 1)M(1,1)}

Association[ass(2,0)M(2,0)]={<part-
of>, ass(1, 1)M(1,1)}

Association[ass(3,0)M(3,0)]={<part
-of>, ass(1, 1)M(1,1)}

Association[ass(4,0)M(4,0)]={<calcul
ation>, *, ass(2,0)M(2,0), ass(3,
0)M(3,0)}

E. Document Template Selection
Document template selection is to choose an appropriate

document template according to the type of the incoming
document in order to create a new document as a feedback.
Thus, all participating EISs in the e-marketplace need to
maintain a template library respectively to store kinds of
document templates. Document template selection is
implemented in a hybrid collaborative human-agent framework,
which mixes with human and automated agents. In this
framework, humans are responsible for providing the human-
related work, e.g., template creation, modification and
publication. Automated agents are responsible for non-human
work, e.g., template matching, choosing and matrix tree
creating.

F. New Document Creation
A new document will be created after mapping related

nodes of the reified vector tree of the incoming document to
proper positions of the matrix tree of the selected document
template. The mapping procedure is to index each related node
of the vector tree of the exact matrix position in the matrix tree.
For example, if the matrix position of the matrix tree of a
document template (T) is the transposition of that of the
received document, the mapping procedure is as below.

W =
⎣⎢
⎢⎢
⎡8(1,1) … 8(1, B)… … …… 8(�, Y) …… … …8(/, 1) … 8(/, B)⎦⎥

⎥⎥
⎤ , 8(�, Y) ∈ W = ����.f.� ∈ gW

Next, the new document can be further edited before
transferring to appropriate receivers according to specific
business processes.

V. EXPERIMENTS AND RESULTS

A. Document Representation Language
Tabdoc model regards any document as a tabular document

by using a vector tree and matrix tree as its document structure.
Each node in a vector tree is indexed by a vector concept which
represents the position of a cell in a tabular document. Tabdoc
model follows sign theory [5] by structuring a document as a
compound sign. A compound sign consists of a set of
compound signs until each compound sign is a list of atomic
signs. Specifically, any document which can be represented as
a tabular document and its document structure can form a
vector tree with each node indexed by a vector concept is
called sign-oriented document. At present, sign-oriented
documents are implemented by XML. To facilitate sign-
oriented documents transformable into tabular documents,
some denoters must be predefined as follows:

Sign(
tid, a sign identifier in a document to specify the position of the

sign in a tree-based document. Its format is x.y…z
obj, an object type. When obj = “table”, a sign introduces a table

and this sign becomes table root. When obj = “cell”, a sign
introduces a cell. When obj = “list”, a sign introduces a list of
cells.

term, a name of a sign to specify the meaning of the sign.
ref, a reference of a term to a common vocabulary.
ass, an association of a sign to specify which signs can form a

grammatical relation.
style, a format specification of a sign in order to polish the looking

of the term in the sign.
)

The two denoters such that tid and obj are designed for tree
view and table view, where obj aims to specify how a vector
tree can be mapped onto a table. These two denoters are
effectively to create and locate any sign element in a sign-
oriented document. Fig. 4 is an example of a sign-oriented
document where indexes in the form of 0…i are vector
concepts. Every sign element in a sign-oriented document is
identified by a term identifier (i.e., vector concept) and the
semantics of each sign element is assigned by a set of denoter
and value pairs. The whole tree-structured sign-oriented
document tells the structure of a document.

<sign tid = “0” obj=“table”> // tid = 0, root of a vector tree
<sign tid = “0.1”> // row 1

<sign tid = “0.1.1”/> // column 1
</sign>
<sign tid = “0.2”> // row 2

<sign tid = “0.2.1”/> // column 1
</sign>
<sign tid = “0.3”> // row 3

<sign tid = “0.3.1”/> // column 1
</sign>
<sign tid = “0.4”> // row 4

<sign tid = “0.4.1”/> // column 1
</sign>

root = 1.i..k

(1,0) (2,0) (3,0) (4,0)

(1,1)

Row

Column

(1,5) (2,1) (2,5) (3,1) (3,5) (4,1) (4,5)

</sign>

Figure 4. An example of a sign-oriented document.

Given <sign tid = “0” obj = “table”/>, it is immediately
known that a tree structure will be drawn from the position tid

= 0 as shown in Fig. 5 and its matrix tree is J1 01 01 01 0K.

Figure 5. Vector tree of the sign-oriented document in Fig. 4.

B. An Example based on Tabdoc Model
In this paper, a system called Tabdoc Editor is developed to

implement Tabdoc approach. This section shows an example
about how to represent a purchase order based on the Tabdoc
model. Fig. 6 shows the prototype of Tabdoc approach. In Fig.
6, ConexNet is responsible for providing terms (i.e.,
collaborative signs, call cosigns) in a CONEX dictionary to all
document writers and document readers for them to use
through a semantic input method (SIM) which is an input
method engine. CONEX dictionary is kept updated in real-time.
A document writer writes (or edits) a semantic document
through a Tabdoc Editor to form a tabular document, which is
again transformed into a sign-oriented document or a
compound sign that is a set of hierarchically arranged atomic
signs. The compound sign is then sent to the remote document
system in other contexts.

Figure 6. The prototype of Tabdoc approach.

In the process of document construction, there exist two
kinds of roles such that document template designers and
document writers. One similarity between them is they both
use Tabdoc Editor as the developing environment. However,
the former are mainly responsible to construct document
structure (i.e., tree structure and table structure), render the

format (i.e., layout view) and fill in abstract concepts and
desirable relations (i.e., concept view and association view) in
order to complete document templates. The latter are
responsible for reifying existed document templates (e.g., Fig.
7) with required values. Another is they both use CONEX as a
term provider through SIM. Tabdoc Editor will automatically
summarize different views of a tabular document when it has
been created, as shown in Fig. 8.

Figure 7. An example of a purchase order.

Figure 8. Summary of different views.

After a Tabdoc document is arrived at a document receiver,
document processing is executed to test whether the document
sent by the document writer faithfully arrives at the document
reader’s side and whether the semantics of the document is
consistent during transferring. In the above example, after a
semantic document template is reified by a document writer, it
is transformed into a sign-oriented document that is a set of
hierarchically arranged atomic signs. The compound sign is
then sent to the Tabdoc Editor of the document receiver. When
arrived, the concepts and grammatical relations in the received
document will be translated into the semantically equivalent
concepts and relations in the context of the receiver according
to the CONEX chain [5]. Then the Tabdoc Editor of the
receiver will first check the syntactic and semantic consistency
of the document according to predefined rules like (8) and (9).
After that, document structure and different views of the
document will be extracted as shown in Fig. 5 and Fig. 8 and
the document will be presented on the Tabdoc Editor of the
receiver as shown in Fig. 7. Next, the automated agent of
Tabdoc Editor will choose an appropriate template ready to
respond to the purchase order as shown in Fig. 9. After
mapping necessary node of the vector tree of the incoming
document to the proper position of the matrix position of the
template and completing required authoring, the reified
document template (see Fig. 10) will be sent out according
specific business processes.

Root=0= (0, 0)

(4,0)

(1,1)

Row

Column

(2,1) (3,1) (4,1)

(1,0) (2,0) (3,0)

CONEX

Network

CONEX
Dictionary Compound Sign

as document

Tabdoc Editor

 Document Writer

CONEX
DictionaryCompound Sign

as document

Tabdoc Editor

Document Reader

Figure 9. An example of template.

Figure 10. Reified template as feedback document.

Experiment results show that document writers can
autonomously design their own tabular document templates
without affecting readers’ reading and terms used by the
document writer are semantically equivalent to the terms
presented to the document reader.

VI. CONCLUSION
Currently, it is difficult to interpret a same semantic

document in different EISs to conclude with a same meaning
and automatically make a feedback. Even though existing
document standards have tried many approaches, they are not
effective to conquer this problem. The receiving parties (both
computers and human) may not correctly interpret the meaning
carried by the received documents because sending parties and
receiving parties are often in different semantic communities.
To achieve exact meaning interpretation between document
writers and readers, this paper proposes Tabdoc approach with
a processing procedure to respectively represent and process
documents while maintaining syntactic and semantic
consistency. The novelties of our method are: (1) the autonomy
of document writers is enabled, such that document writers can
autonomously design any document templates without
affecting document readers to read and use the information; (2)
memory is saved. This benefit comes from the dynamic
generation of nodes in a vector tree. Blank cells of a table will
have no nodes in a vector tree, which means there will have no
continuous tid for sibling nodes; (3) semantics is added into
documents by using the common vocabulary CONEX and
grammatical relations, and the meaning interpretation between
document writers and readers are kept consistent; (4) document
analysis is fully automatic and schema-independent, relying on
no background information about the vocabulary and the actual
textual content of the document; (5) a new document can be
automatically created as a feedback at the end of document
processing.

ACKNOWLEDGMENT

This research is partially supported by University of Macau
research grants no. MYRG069(Y1-L2)-FST12-GJZ and no.
MYRG2015-00043-FST.

REFERENCES

[1] J. Guo, “Inter-Enterprise Business Document Exchange,” In
Proceedings of the 8th International Conference on Electronic
Commerce, ICEC'06, ACM Press, pp. 427-437.

[2] Angelo D. Iorio, S. Peroni, F. Poggi, D. Shotton, and F. Vitali,
“Recognising document components in XML-based academic articles,”
In Proceedings of the 13th ACM symposium on Document engineering
(Sept. 2013), pp. 181-184.

[3] J. Guo, “SDF: A Sign Description Framework for Cross-context
Information Resource Representation and Interchange,” In Proceedings
of the 2nd Int'l Conf. on Enterprise Systems (Aug. 02-03, 2014), pp. 255-
260.

[4] J. V. Dury, “Using RDFS/OWL to ease Semantic Integration of
Structured Documents,” In Proceedings of the 13th ACM symposium on
Document engineering (Sept. 10-13, 2013), pp. 189-192.

[5] J. Guo, “Collaborative conceptualization: Towards a conceptual
foundation of interoperable electronic product catalogue system design,”
Enterprise Inf. Syst. 3, 1 (Feb. 2009), pp. 59–94.

[6] J. Guo, Z. Hu, C.-K. Chan, Y. Luo, and C. Chan, “Document-oriented
heterogeneous business process integration through collaborative e-
marketplace,” In Proc. of Tenth International Conference on Electronic
Commerce (Innsbruck, Austria, August 19-22). ICEC'08. ACM Press.

[7] G. Miller, “WordNet: A lexical database for English,” Commun. ACM.
38, 11 (Nov. 1995), pp. 39–41.

[8] WordNet. Available: http://wordnet.princeton.edu/
[9] Ma Yongheng, Xiong Qianxing, Wu Yefu, Meng Bo, Tian Jie, and Yang

Li'na, “Build W3C XML Schema for UN/EDIFACT Messages with
Multilayer and Modular Architecture,” International Conference on Web
Services (June 23 - 26, 2003), pp. 515-519.

[10] Antonio Ruiz-Martínez, Óscar Cánovas Reverte, and Antonio F. Gómez-
Skarmeta, “Payment frameworks for the purchase of electronic products
and services,” Computer Standards & Interfaces. 34, 1 (Jan. 2012), pp.
80-92.

[11] UBL. Universal Business Language. http://www.oasis-
open.org/committees/ubl/.

[12] OAGIS. Open Application Group Integration Specification.
http://www.oagi.org.

[13] Alessio Bechini, Andrea Tomasi, and Jacopo Viotto, “Document
Management for Collaborative e-Business: Integrating EBXML
Environment and Legacy DMS,” In Proceedings of the International
Conference on e-Business (July 28-31, 2007), pp. 78-83.

[14] Fabrizio Pecoraro, Daniela Luzi, and Fabrizio L. Ricci, “A conceptual
Framework to Design a Dimensional Model Based on the HL7 Clinical
Document Architecture,” Studies in Health Technology and Informatics.
205 (2014), pp. 278-282.

[15] Danijel Novakovic and Christian Huemer, “Applying business context to
calculate subsets of business document standards,” Information
Technology and Management (April 24, 2015), DOI=
http://dx.doi.org/10.1007/s10799-015-0228-2.

[16] Konstantin Hyppönen, Miika Alonen, Sami Korhonen, and Virpi Hotti,
“XHTML with RDFa as a Semantic Document Format for CCTS
Modelled Documents and Its Application for Social Services,” ESWC
2011Workshops. 7117 (2012), pp. 229-240.

[17] UNIFI. Universal financial industry message scheme.
http://www.iso.org/iso/catalogue_detail?csnumber=55005.

[18] Jingzhi Guo and Guangyi Xiao, “Achieving Meaning Understanding in
E-Marketplace through Document Sense Disambiguation,” In: Software
Services for e-World - I3E, IFIP AICT 341 (2010), pp. 127-138.

[19] Horst Silberhorn, “TabulaMagica – An Integrated Approach to Manage
Complex Tables,” In Proceedings of the 1th ACM symposium on
Document engineering (Nov. 9-10, 2001), pp. 68-75.

