統計方法

- 敘述性統計量(Descriptive Statistics)
 - →例如平均數、標準差、所佔比例(圖表)等
- ●相關性分析
 - → 比較平均數(Z或t檢定)、變異數
 - → 線性相關係數(Correlation Coefficient)
- 卡方檢定(Chi-Square Test)
 - →交叉分析(獨立性檢定)
- 因素分析(Factor Analysis)
 - → 資料精簡(Data Reduction)與詮釋(Interpretation)
- ●其他方法
 - → 迴歸(Regression)
 - → 時間數列(Time Series)
 - → 存活分析(Survival Analysis)
 - → 類別資料分析(Categorical Data Analysis)

常見的敘述性統計量(Statistics):

- 1. 集中趨勢量數(Central Tendency)
- 2. 差異量數(Dispersion)

●集中趨勢量數:

- 1. 平均數(Mean;期望值)
 - (a) 算術平均數(Average)
 - (b) 加權平均數(Weighted Average)
 - e.g.(a)全班的平均身高
 - (b)本學期的平均成績
 - (c)其他(幾何平均數、調合平均數)
- 2.中位數(Median): 一半的數值比中位數 大,一半的數值比中位數小。
- e.g. (a) 員工薪資為25,30,30,30,35,

43, 70, 80, 85→中位數是 35

(b) 25, 30, 30, 30, 35, 43, 70, 80, 85, 90

→中位數是
$$\frac{35+43}{2}$$
 = 39

- 3. 眾數(Mode): 出現次數最多的數值
 - e.g.(a) 員工薪資為25,30,30,30,35,43,70,

80,85→眾數是30

- (b) 員工薪資為 25, 30, 30, 35, 38, 43, 43,
- 80,85→眾數是30及43(眾數不唯一)

● 差異量數:

1.全距(Range):

最大與最小數值之差(Range = Max - Min)

- 2.四分位差(Quartile Deviation):
 - (a)四分位數(Quartile; Q_1): 3/4 的數值比 Q_1

大,1/4 的數值比 Q_1 小。

- (b)四分位差 = $Q_3 Q_1$
- 3. 變異數(Variance; σ²)與標準差(Standard Deviation; σ):

母體變異數:
$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

樣本變異數:
$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

4. 變異係數(Coefficient of Variance; CV):

$$CV = \frac{\sigma}{\mu} \times 100 \%$$

• 假設檢定(Testing Statistical Hypothesis)

對母體特性建立一個正面及一個反面的敘述,藉 由樣本資料判斷假設對錯的過程。

〔註〕正面的敘述為虛無假設(Null Hypothesis;

 H_0),而反面的敘述為對立假設(Alternative

Hypothesis; H_1)。 H_0 通常為與期望結果相反的敘述。

e.g. (a)行政院長的執政能力遭立法委員質疑,據悉已有超過一半的委員不滿意。以 p 代表立法委員不滿意的比例,則假設檢定可定為

(b)某減肥食品公司宣稱其產品 A 較另一公司之產品 B 更有效果。以µ代表服用產品 A 與 B 所減輕重 量之差,可定義

$$H_0: \mu = 0 \rightarrow$$
 簡單假設 $H_1: \mu > 0$

(c)美國加州政府宣稱在加州無種族歧視問題,黑人 與白人學齡小孩的就學率無差異。根據官方說 法,以 p 代表黑人與白人的就學率之差值,可定 義為

Note:檢定以拒絕 H_0 (Reject H_0)與不拒絕 H_0 為結論。

• 假設檢定的步驟

- (1)建立假設 H_0 及 H_1
- (2)選擇適當的檢定統計量的
- (3)決定顯著水準α並確定 С
- (4)抽樣、檢定與結論

• 平均數 μ 的檢定

(1) 大樣本檢定或是 $n \ge 30$ (若 H_0 : $\mu = \mu_0$)

因為在大樣本下, \overline{X}_{n} $\sim N(\mu, \frac{\sigma^{2}}{n})$,也就是說

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

在左尾檢定下,即 H_0 : $\mu < \mu_0$,直觀上 \overline{X}_n 愈小,愈有可能是 H_1 ,也就是

$$C = \left\{ Z < -Z_{\alpha} \right\}$$

(2) 小樣本檢定 (n < 30)

與上例相似,但Z值以t檢定代替。

e.g. (a) 對台北縣某候選人作支持度調查,若抽樣數為 1000 人及 $\alpha = 0.05$,

$$H_0$$
: $p = \frac{1}{2}$ v.s. H_1 : $p > \frac{1}{2}$,則拒絕域應滿足 $C = \{x | x > x_0\}$ 其中

$$\mathbf{P}\left(x > x_0 \mid p = \frac{1}{2}\right) = \mathbf{P}\left(\frac{x - 1000 \times \frac{1}{2}}{\sqrt{1000 \times \frac{1}{2} \times \frac{1}{2}}} > \frac{x_0 - 1000 \times \frac{1}{2}}{\sqrt{1000 \times \frac{1}{2} \times \frac{1}{2}}} \mid P = \frac{1}{2}\right)$$
$$= \mathbf{P}\left(Z > \frac{x_0 - 500}{15.81}\right) = 0.05$$

或是
$$\frac{X_0 - 500}{15.81} = 1.645 \Rightarrow X_0 = 526$$

(b) 延續(a)的敘述,計算對應 P=0.55的 β 值

$$\beta = \mathbf{P}(x \le 256 | P = 0.55)$$

$$= \mathbf{P}\left(\frac{x - 1000 \times 0.55}{\sqrt{1000 \times 0.55 \times 0.45}} \le \frac{526 - 1000 \times 0.55}{\sqrt{1000 \times 0.55 \times 0.45}} | P = 0.55\right)$$

$$= \mathbf{P}(Z \le -1.526) \approx 0.0636$$

● P-值(P-Value)法

P值法是依樣本觀察值作成拒絕域,進而求出的機率值。例如在左尾檢定時 $(H_0: \theta = \theta_0 \text{ vs.})$

$$H_1: \theta < \theta_0$$
) 若樣本統計量為 $\hat{\theta_0}$,則

$$P-Value = P(\hat{\theta} \leq \hat{\theta_0}|H_0$$
為真 $) = P(\hat{\theta} \leq \hat{\theta_0}|\theta = \theta_0)$

[註]:
$$\exists P - Value < \alpha \Rightarrow$$
 拒絕 H_0

(反之,
$$P-Value \ge \alpha \Rightarrow$$
接受 H_0)

e.g.(c)某工廠工程師為了控制產品品質,抽出重量應為 180 公克的 10 罐產品,得出平均數 158 公克及標準差 20 公克。

首先定義 $H_0: \mu = 180$ vs. $H_1: \mu \neq 180$ $\pi P - Value = 2P \left(\frac{\overline{X}_n - 180}{20} \ge \left| \frac{158 - 180}{20} \right| | \mu = 180 \right)$ $= 2P(t(9) \ge 1.1) = 2 \times 0.15 = 0.30$

在 $\alpha = 0.05$ 的狀況下不拒絕 H_0 。

(d) 同上例,但計算 $\overline{X}_n = 158$ 的顯著水準

$$t_0 = \frac{\overline{X}_n - 180}{20} = \frac{158 - 180}{20} = -1.1$$

 $|t_0|$ 小於 $t_{0.975,(9)} = 2.262$,因此不拒絕 H_0 。

• 決策法則:

- ①當檢定量落入拒絕域,則拒絕 H_0 。
- ②當檢定量未落入拒絕域,則不拒絕 H_0 。

其中拒絕域 (Critical Region 或 Rejection Region) 與接受域 (Acceptance Region) 相對,與檢定假設相關。另外,臨界值 (Critical Value) 則為兩個區域的界點。

● 型 I 與型 II 誤差 (Type I and Type II Errors)

型 I 誤差 (顯著水準一般記為 α) 是 H_0 為真時卻作出拒絕 H_0 的決策; 而型 II 誤差 (記為 β) 則是在 H_1 為真時卻不拒絕 H_0 。

	H_0 為真	H_1 為真
拒絕 H_0	α 誤差	正確決策
接受 H_0	正確決策	β 誤差

- $\rightarrow \alpha$ 與 β 和拒絕域有絕對關係
 - $\sim \alpha = P(拒絕 H_0 | H_0 為真)$
 - $\beta = P(接受 H_0 | H_1 為真)$
- [i] ①固定樣本數, α 與 β 呈現反比關係 ②欲使 α 及 β 同時下降,可提高樣本數

卡方檢定(Chi-Square Test)

- 卡方檢定主要在處理類別資料的檢定,依序為
- (1)Goodness of Fit Test (適合度檢定)
- (2)Tests of Independence (獨立性檢定)
- ③Tests of Homogeneity(齊一性檢定)
- e.g. (a)調查台北對今年治安的看法,如下表:

看法	人數
比去年好	245
差不多	126
比去年差	713

(b)調查大學生中性別與選系的關係,得出

學院				
性別	商	工	藝術	公衛
男	21	16	145	8
女	14	4	175	17

(c)調查年紀與買車習性的關係

年齢	大型車	中型車	小型車
20~39	90	18	92
40~59	40	60	100

● 適合度檢定:

通常用來檢定母體是否為某一特定分配。

e.g. (d)投擲一硬幣 500 次,得出 230 個正面,欲檢定 此硬幣為公平硬幣

	正面	反面
觀察值	230	270
理論值	250	250

(i)Z 檢定:
$$P(|Z| \ge \frac{|230 - 250|}{\sqrt{500 \times \frac{1}{2} \times \frac{1}{2}}} = 1.789) \cong 0.0736$$

(*ii*)
$$\chi^2$$
 檢定: $\chi^2 = \sum_{i=1}^2 \frac{\left(o_i - e_i\right)^2}{e_i} = \frac{400}{250} + \frac{400}{250} = 3.2$

其中 O_i , e_i 為第 i 個值的觀察值與理論值。查表得出 $\chi^2_{0.10}(1)=2.706,\chi^2_{0.05}(1)=3.841$ 。

(e)調查 400 個家中有兩個子女的家庭以研究男女嬰出生的機會是否相同·

	男男	男女	女男	女女
觀察值	92	94	110	104
理論值	100	100	100	100

$$\chi^2 = \sum_{i=1}^4 \frac{\left(o_i - e_i\right)^2}{e_i} = \frac{64}{100} + \frac{16}{100} + \frac{100}{100} + \frac{16}{100} = 1.96 < \chi^2_{0.05}(3) = 7.815$$

⇒ α=0.05 下我們認為男女嬰出生機會相同·

(f)統計歷年台灣核能電廠的出事率,以確定其發出次數是否為平均每年兩次的布阿松分配(假設資料,共30年資料)

每年次數	0~1 次	2次	3次	4次	5次
觀察值	3	5	10	8	4
理論值	5.97	6.72	6.72	5.04	5.55

$$\chi^2 = \sum_{i=1}^{5} \frac{\left(o_i - e_i\right)^2}{e_i} \cong 5.69 < \chi^2_{0.05}(4) = 9.488$$

因此我們不拒絕核能電廠每年出事次數為 Poisson(3) 的假設·

[註]:χ²檢定要求每個理論值至少為5,以避免分母 太小產生誤判。

●獨立性檢定:

用來檢定母體中的各項特性間是否會互相影響· e.g. (b)

學院	商	エ	藝術	公衛	列合計
性別					
男	21	16	145	8	190
女	14	4	175	17	210
行合計	35	20	320	25	400

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

其中 O_{ij} 與 C_{ij} 為第 i 列第 j 行觀察值與理論值, i=1,...,r, j=1,...,C,而自由度為(r-1)(c-1)。假 設檢定 H_0 : 行與列的類別互相獨立

$$\longrightarrow H_0: p_{ij} = p_{i}, p_{i}, i = 1,...,r, j = 1,...,c$$

其中 $P_{i.}$ 為第i列平均, $P_{.j}$ 為第j列平均,行列互相獨立的理論值 $P_{ij} = P_{i.} \times P_{.j}$

理論值:

	商	工	藝術	公衛	列
男	0.0416	0.02375	0.38	0.0297	0.475
	(16.625)	(9.5)	(152)	(11.875)	
女	0.0459	0.02625	0.42	0.0328	0.525
	(18.375)	(10.5)	(168)	(13.125)	
行	0.0875	0.05	0.8	0.0625	1

$$\chi^2 = 13.675 > \chi^2_{0.05}(3) = 7.815$$

因此我們認為性別與選系有關聯。

(g) 隨機抽樣調查 200 位大學生,獲得其就讀年級與 吸煙習慣的資料如下:

年級	一年級	二年級	三年級	四年級
習慣				
吸煙	21	33	25	20
不吸煙	47	26	19	9

在 $\alpha = 0.01$ 下檢定大學生之就讀年級與吸煙習慣是否獨立,可得

$$\chi^2 = 15.7438 > \chi_{0.05}^2(3) = 11.34$$

因此我們認為抽煙與就讀的年齡有關聯。

● 齊一性檢定:

與獨立性檢定類似,但列聯表(Contingency Table)中的列(或行)代表不同的母體,而且檢定主旨在於比較各母體的異同。

e.g.(c)欲知不同年齡層的買車習性是否有差異 $(\alpha = 0.01)$

車別	大型車	中型車	小型車
年龄			
20~39	90	18	92
40~59	40	60	100

$$\chi^{2} = \frac{625}{65} + \frac{441}{39} + \frac{16}{96} + \frac{625}{65} + \frac{441}{39} + \frac{16}{96}$$
$$= 42.179 > \chi^{2}_{0.01}(2) = 9.210$$

迴歸分析與相關分析

●迴歸(Regression)

若兩變數的關係屬於線性相關,可以直線方程式表達.

- e.g.(a)標準體重=(身高-100)×0.9, 單位:公斤及公分 (b)標準體重=25×(身高) 2 , 單位:公斤及公尺
 - [註]: 1.只要滿足 y = a + bx 的方程式即可視為 迴歸,上例中標準體重為 y (因變數; Dependent Variable),身高或(身高)²為x (自變數;Independent Variable).
 - 2.若迴歸方程式中只有一個自變數,則為簡單迴歸(Simple Regression);兩個或兩個以上的自變數,為複迴歸(Multiple Regression).

● 模型:

$$Y_{i} = \mu_{i} + \varepsilon_{i} = \beta_{0} + \beta_{1}X_{i} + \varepsilon_{i},$$

$$\varepsilon_{i} \sim N(0, \sigma^{2}), \quad i = 1, 2, ..., n$$

因此
$$E(Y_i) = \beta_0 + \beta_1 X_i$$

 $Var(Y_i) = Var(\varepsilon_i) = \sigma^2$

其中 β_0 及 β_1 參數的求取,以最小平方法(Method of L east Squares)配適,即

$$\min_{\beta_o, \beta_1} (\mathbf{Y}_i - \beta_0 - \beta_1 \mathbf{X}_i)^2$$

其中 (X_i, Y_i) 為第i組的觀察值.

● 誤差項平方法

$$Q = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} [Y_{i} - (\beta_{0} + \beta_{1} X_{i})]^{2}$$
 依 $\frac{\partial Q}{\partial \beta_{0}} = 0$ 及 $\frac{\partial Q}{\partial \beta_{1}} = 0$,可求得

$$\tilde{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{S_{xy}}{S_{x}^{2}}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

e.g.(c)下表為八名售貨員的年資與月銷售金額資料

售貨	A	В	C	D	E	F	G	Н	
銷售金額(Y)	9	6	4	3	3	5	8	2	
年 資 (X)	6	5	3	1	4	3	6	2	

$$\hat{\beta}_1 = \frac{n\sum X_i Y_i - (\sum X_i)(\sum Y_i)}{n\sum X_i^2 - (\sum X_i)^2} = \frac{8 \times 178 - 30 \times 40}{8 \times 136 - (30)^2} = \frac{56}{47}$$

$$\hat{\beta}_0 = \frac{40}{8} - (\frac{56}{47})(\frac{30}{8}) = \frac{25}{47}$$

(d)下表為1988年紐約市一至七月的地下鐵資料

	一月	二月	三月	四月	五月	六月	七月
(y)搶劫案	475	465	470	500	550	600	602
(z)破案數	180	155	160	190	225	220	223

$$y=419+26.1*$$
月份, $R^2=87.1\%$
 $z=147+11.6*$ 月份, $R^2=69.9\%$

● 判定係數(Coefficient of Determination)

由 $\hat{y}=\alpha+\beta$ x的模型預測真正的y值總變異(SST)

= 迴歸變異(SSR) + 無法解釋之變異(SSE) 或

$$\sum (Y_i - \overline{Y})^2 = \sum (\hat{Y}_i - \overline{Y})^2 + \sum (Y_i - \hat{Y}_i)^2$$

→判定係數即為由迴歸可解釋之部份

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}, \quad 0 \le R^2 \le 1$$

● 相關係數(Correlation Coefficient)

相關係數用來判定兩個變數間線性關係之強度

$$\rho = \frac{E(X_i - \mu_x)(Y_i - \mu_y)}{\sigma_x \sigma_y} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \to$$
母體相關係數

無母數統計

(Nonparametric Statistical Methods)

不以母體的母數進行統計推論,也不需要母體的分配 →無母數的推論方法(Distribution-free Methods)

(1)單一樣本的推論方法

- I.單一樣本符號檢定(One-sample Sign test)
- →檢定中位數(使用二項分配)

e.g.(a)紀錄台北市今年十月及十一月每週三之日 平均溫,得到

30,24,27,25,20,23,24,18,22

欲檢定日平均溫之中位數是否為20度。

 $H_0: p = 0.5$ v.s. $H_1: p \neq 0.5$

→大於 20 為+,而小於 20 為-,等於 20 則不考慮。

++++++++ →8 個中有 7 個大於 20

 $\therefore P(X \ge 7$ \not D $X \le 1$ 1 p = 0.5)

$$= \left[\binom{8}{0} + \binom{8}{1} + \binom{8}{7} + \binom{8}{8} \right] \cdot \left(\frac{1}{2} \right)^8 = \frac{18}{256} = 0.07$$

[註]若總樣本數夠大時(若 np>5 且 n(1-p)>5)

用
$$Z = \frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

II.Wilcoxon 符號等級檢定

(Wilcoxon Signed-rank test)

與 Sign test 相似,但必須排序處理

$$\therefore T^{+} = 34.5 \ \text{及} T^{-} = 1.5 \Rightarrow T = Min(T^{+}, T^{-}) = 1.5$$
 查表得出在 n=8 時, $\alpha = 0.05 \ \text{及雙尾檢定時,}$ 拒絕域為 T<4 \Rightarrow 拒絕 $_{H_{0}}$

[註]大樣本之下,

$$E(T) = \frac{n(n+1)}{4}$$
 , $Var(T) = \frac{n(n+1)(2n+1)}{4}$
再以 $Z = \frac{T - E(T)}{\sqrt{Var(T)}} \sim N(0,1)$ 作檢定

III.連檢定(Run test)

檢定一組樣本是否合乎隨機性(Randomness)

e.g.(b)某是非題之標準答案如下,欲檢定題目編排 是否為隨機:

$$\bigcirc$$
 x x \bigcirc x \bigcirc

查表得
$$P(R \le 6$$
 或 $R \ge 16$)
$$= P(R \le 6) + P(R \ge 16) = 0.038$$
也就是拒絕答案編排為隨機之假設。

[註]←1,及1,各為小於及大於中位數之個數

$$\begin{cases}
R_0 \ge \frac{2n_1n_2}{n_1 + n_2} + 1 \Rightarrow p - value = P(R \ge R_0 | n_1, n_2) \\
R_0 < \frac{2n_1n_2}{n_1 + n_2} + 1 \Rightarrow p - value = P(R \le R_0 | n_1, n_2)
\end{cases}$$

$$\uparrow E(R) = \frac{2n_1 n_2}{n_1 + n_2} + 1$$

$$Var(R) = \frac{2n_1 n_2 (2n_1 n_2 - n_1 - n_2)}{(n_1 + n_2)^2 (n_1 + n_2 - 1)}$$

(2)雨組樣本的推論方法

I.兩組樣本是否相同→Wilcoxon Signed-rank test

[註]兩兩作比較,因此兩組之樣本數必須相同

e.g.(c)兩組學生各 12 人作教材訓練之成效比較

⇒
$$T = T^{-} = 5$$

拒絕域 $T < 11$,因此拒絕 A 與 B 相同的假
設

II.Mann-Whitney U 檢定

→與 Wlicoxon sined-rank test 類似,但兩個樣本 之樣本數不必相同

e.g.(d)以下為某公司男女職員平均午餐消費金額

$$T_1 = 58.5 \Rightarrow U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - T_1 = 25.5$$

$$T_2 = 61.5 \Rightarrow U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - T_2 = 30.5$$

因此 $U = \min(U_1, U_2) = 25.5$ 查表 $(n_1 = 7, n_2 = 8)$ 得 $U \le 13$ 為拒絕域 \Rightarrow 不拒絕 H_0

[註]大樣本之下, Mann-Whitrey U test 有

$$E(U) = \frac{n_1 n_2}{2}$$
, $Var(U) = \frac{n_1 n_2 (n_1 + n_2 + 1)}{12}$

III.Spearman 等級相關係數 參閱迴歸分析

(3)多組樣本的推論方法

I.Kruskal-Wallis 檢定法

與 Mann-Whitney U test 相似,將所有觀察值一起排序,再分別求出各樣本之排序和T,,代入

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{T_i^2}{n_i} - 3(n+1)$$

 $(n_i$ 為第 i 樣本總數 $, n = n_1 + n_2 + \cdots + n_k)$

在" H_0 :k 組樣本之母體分配相同"為真下, $H \sim \chi^2 (k-1)$

II.Friedman 檢定法

與 Kruskal-Wallis 檢定法類似,但適用於隨機區集實驗設計(Random Block Design),且排序為分集(Block)而定

檢定量
$$F_r = \frac{12}{bk(k+1)} \sum_{i=1}^{k} T_i^2 - 3b(k+1)$$

在
$$H_0$$
之下, $F_r \sim \chi^2(k-1)$

e.g.(e)

第一組	第二組	第三組
59(6)	52(1)	58(4.5)
64(9.5)	58(4.5)	65(11)
57(3)	54(2)	71(12)
62(7)		63(8)
		64(7.5)
T_{i} (25.5)	(7.5)	(4.5)

用 Kruskal-Wallis 檢定法得出 $H = 6.101 > \chi_{0.05}^2(2) = 5.99$

(f)

`	/			-
	區集	第一組	第二組	第三組
	1	25(3)	24(2)	22(1)
	2	18(1)	27(3)	24(2)
	3	15(1)	24(2)	27(3)
	4	21(2)	19(1)	25(3)
	5	22(2)	17(1)	30(3)
	T_{i}	(9)	(9)	(12)

得 Friedman 檢定值 $F_r = 1.2 < \chi_{0.05}^2(2) = 5.99$